Electrical resistivity of solid and liquid Cu up to 5 GPa: Decrease along the melting boundary

نویسندگان

  • Innocent C. Ezenwa
  • Richard A. Secco
  • Wenjun Yong
  • Monica Pozzo
چکیده

The electrical resistivity of high purity Cu has been investigated by both experiments and first principle calculations at pressures up to 5 GPa and at temperatures in the liquid phase up to 1730 K. The resistivity decreases with P and increases with T and our data are in very good agreement in relation to 1 atm data. Our melting temperature data agree with other experimental studies. We show that resistivity of Cu decreases along the P,T-dependent melting boundary in disagreement with prediction of resistivity invariance along the melting boundary. These findings are interpreted in terms of the competing effects of P and T on the electronic structure of liquid Cu. The electronic thermal conductivity is calculated from resistivity data using the Wiedemann-Franz law and is shown to increase with P in both the solid and liquid states but upon T increase, it decreases in the solid and increases in the liquid state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-consistent thermodynamic description of silicate liquids, with application to shock melting of MgO periclase and MgSiO3 perovskite

S U M M A R Y We develop a self-consistent thermodynamic description of silicate liquids applicable across the entire mantle pressure and temperature regime. The description combines the finite strain free energy expansion with an account of the temperature dependence of liquid properties into a single fundamental relation, while honouring the expected limiting behaviour at large volume and hig...

متن کامل

Geostatistical Modeling of Electrical Resistivity Tomography for Imaging Porphyry Cu Mineralization in Takht-e-Gonbad Deposit, Iran

This work presents the application of a geostatistical-based modeling approach for building up electrical properties acquired from a geophysical electrical tomography survey deployed for the purpose of porphyry Cu exploration at the Takht-e-Gonbad deposit, in the central domain of Iran. Electrical data were inverted in 2D along several profiles across the main favorable zones of Cu-bearing mine...

متن کامل

Melting of Tin at High Pressures

Introduction Information about the physical properties of materials at high pressures and temperatures is important for advancing our understanding of planetary interiors. Determining the melting curves of materials has attracted much interest in the planetary sciences. For example, the pressure dependencies of the melting curve and viscosity have been linked [1]. Furthermore, the accurate dete...

متن کامل

Electrical Resistivity Measurement of the Molten Cordierite Glass Using Two-wire method

Electrical resistivity (ER) is a main parameter in the melting processes of glasses. However, its measurement is difficult at high temperatures. In this study the electrical resistivity of different cordierite glass samples in the molten state was measured in the temperature range of 1100˚C to 1550 ˚C using the two-wire method. It was attempted to decrease the electrical resistivity of the glas...

متن کامل

Temperature of the inner-core boundary of the Earth: Melting of iron at high pressure from first-principles coexistence simulations

The Earth’s core consists of a solid ball with a radius of 1221 Km, surrounded by a liquid shell which extends up to 3480 km from the center of the planet, roughly half way toward the surface the mean radius of the Earth is 6373 km . The main constituent of the core is iron, and therefore the melting temperature of iron at the pressure encountered at the boundary between the solid and the liqui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017